Nice Real Estate Investing photos

A few nice Real Estate Investing images I found:

Real Estate Investing
Image by Stoutcob
Marble Galls (Andricus kollari)

"The Oak Marble Gall (also known as ‘Oak Nut’) is caused by a tiny gall wasp, Andricus kollari. Clusters of Oak Marble Galls can be found on oak twigs. They turn brown as they mature and emergence holes, from which the asexual adults have escaped, can be seen from autumn onwards. The empty gall is left on the twig. The emerging females then lay eggs in the buds of Turkey Oaks which develop overwinter and emerge in spring as a sexual generation of males and females, ready to make the familiar summer gall."

"Oak marble galls develop as a chemically induced distortion of leaf buds on pedunculate oak (Quercus robur), sessile oak (Quercus petraea) or their hybrid Quercus × rosacea trees, caused by the parthenogenetic gall wasp (Andricus kollari) which lays eggs within leaf buds using their ovipositor. The Turkey oak (Quercus cerris), introduced into Britain in 1735, is required for the completion of the life cycle of the gall. The oak marble gall is frequently confused with the oak apple gall, caused by another gall wasp, Biorhiza pallida. "

"There is often a whole community – a mini ecosystem – that develops within and around the gall. This is where some other fascinating players enter the stage. Many galls will host lodgers, which zoologists refer to as ‘inquilines’. The term can be applied to many different members of the animal kingdom and comes from the Latin inquilinus, which means ‘lodger’ or ‘tenant’.

The inquiline wasps are closely related to the true gall wasps, but unlike their cousins they cannot create galls. So they do the sensible thing and occupy an existing gall, rent-free! Some inquilines dwell fairly benignly in the tissues of the gall, only modifying their immediate surroundings, and with each occupant minding its own business. Others however, grow in the same chamber as the original occupant, outgrowing and smothering their reluctant ‘landlord’.

Again, each kind of gall varies and some of them may have numerous original occupants, and many inquilines. However, before long, both the cynipid larvae and inquilines will need to watch out. Enter the parasitoid wasps… Parasitoids are different to true parasites in that whereas a parasite feeds from its host, usually without killing it, a parasitoid will occupy a host, eventually leading to the victim’s death. In the case of the parasitoid wasps, they lay their eggs within the larvae of gall inducers or inquilines. As the invader’s egg hatches, the larva develops inside the host grub, devouring it from within.

Naturally, the besieged occupants of the gall have had to evolve to resist such intrusions. In the later stages of the life of a gall, it will often develop a hard exterior, through a process known as lignification (lignin is the chemical compound that gives rigidity to wood). This makes it much harder for parasitoid wasps to penetrate the gall with their ovipositors.

The diverse structures of the galls themselves are largely a result of the need to ward off invaders… In some galls, the chamber is deep enough within the structure that it is just out of reach of the parasitoid. Others have an air space between the outer tissues and the larval chamber. This frustrates the efforts of the invading wasp, as its ovipositor can only penetrate the grub if it has structural support from the surrounding gall tissue. Where these hollows are present, the ovipositor bends and the eggs remain unlaid. One-nil to the cynipid!

Some gall wasps invest in numbers to ensure at least some of their offspring avoid being parasitised. Galls such as the oak apple have numerous chambers within them. While some of the larvae on the periphery may be found and parasitised by an invading wasp, it can’t attack all of them, especially those right in the centre. The invader leaves contented and many of the gall wasps still hatch.

It’s not just the parasitoids that cynipids have to be aware of. Fungi are ever-present in the forest, and if they invade and decompose the gall, the cynipid larvae will not survive. This is where the tannins come in. Oaks, like many other plants, produce high levels of tannins. These chemicals protect the tree against decay, and also against browsing herbivores, since tannins inhibit the absorption of proteins by animals. In galls, however, the concentrations of tannins can be many times higher than they are in the surrounding plant tissue, which helps to prevent fungal attack, and in some cases wards off parasitoids and herbivores. Interestingly, this concentrated source of tannin has even been used by humans. The oak marble gall (Andricus kollari) was originally introduced to Britain because it yields a black dye, although it was found that the tannin content of galls grown here is actually too low for this purpose.

Even the most aggressive parasitoid is vulnerable, as there are bigger, hungrier mouths about. While effective against smaller foes, the tough lignin exterior of some mature galls is not enough to deter a great spotted woodpecker (Dendrocopus major), which will peck the gall open to extract the soft and juicy prize within. Other gall predators include rodents such as wood mice (Apodemus sylvaticus) and birds including great tits (Parus major)"

" The earliest documents written in iron gall ink on papyrus date back into the first centuries after Christ. Because of it’s indelibility, it was the ink of choice for documentation from the Middle Ages to the twentieth century…

Iron gall ink is primarily made from tannin (most often extracted from galls), vitriol (iron sulfate), gum, and water. It was also easily made; the ingredients were inexpensive and readily available. Good quality iron gall ink was also stable in light. It was very popular with artists as a drawing ink, used with quill, reed pen or brush. The coloring strength of iron gall ink was high and it had, depending on its manufacture, a deep blue-black, velvety tone. The range of objects that contain iron gall ink is enormous. Iron gall ink is found on manuscripts, music scores, drawings, letters, maps, and official documents such as wills, bookkeeping records, logs, real estate transactions, etc."

Steven F. Udvar-Hazy Center: Boeing 367-80 (prototype 707, first jet airliner), and De Havilland Canada DHC-1A Chipmunk Pennzoil Special
Real Estate Investing
Image by Chris Devers
Quoting Smithsonian National Air and Space Museum | De Havilland-Canada DHC-1A Chipmunk, Pennzoil Special:

De Havilland originally designed the Chipmunk after World War II as a primary trainer to replace the venerable Tiger Moth. Among the tens of thousands of pilots who trained in or flew the Chipmunk for pleasure was veteran aerobatic and movie pilot Art Scholl. He flew his Pennzoil Special at air shows throughout the 1970s and early ’80s, thrilling audiences with his skill and showmanship and proving that the design was a top-notch aerobatic aircraft.

Art Scholl purchased the DHC-1A in 1968. He modified it to a single-seat airplane with a shorter wingspan and larger vertical fin and rudder, and made other changes to improve its performance. Scholl was a three-time member of the U.S. Aerobatic Team, an air racer, and a movie and television stunt pilot. At air shows, he often flew with his dog Aileron on his shoulder or taxied with him standing on the wing.

Gift of the Estate of Arthur E. Scholl

De Havilland Canada Ltd.

Art Scholl


Country of Origin:
United States of America

Wingspan: 9.4 m (31 ft)
Length: 7.9 m (26 ft)
Height: 2.1 m (7 ft 1 in)
Weight, empty: 717 kg (1,583 lb)
Weight, gross: 906 kg (2,000 lb)
Top speed: 265 km/h (165 mph)
Engine: Lycoming GO-435, 260 hp

Overall: Aluminum Monocoque Physical Description:Single-engine monoplane. Lycoming GO-435, 260 hp engine.

• • • • •

Quoting Smithsonian National Air and Space Museum | Boeing 367-80 Jet Transport:

On July 15, 1954, a graceful, swept-winged aircraft, bedecked in brown and yellow paint and powered by four revolutionary new engines first took to the sky above Seattle. Built by the Boeing Aircraft Company, the 367-80, better known as the Dash 80, would come to revolutionize commercial air transportation when its developed version entered service as the famous Boeing 707, America’s first jet airliner.

In the early 1950s, Boeing had begun to study the possibility of creating a jet-powered military transport and tanker to complement the new generation of Boeing jet bombers entering service with the U.S. Air Force. When the Air Force showed no interest, Boeing invested million of its own capital to build a prototype jet transport in a daring gamble that the airlines and the Air Force would buy it once the aircraft had flown and proven itself. As Boeing had done with the B-17, it risked the company on one roll of the dice and won.

Boeing engineers had initially based the jet transport on studies of improved designs of the Model 367, better known to the public as the C-97 piston-engined transport and aerial tanker. By the time Boeing progressed to the 80th iteration, the design bore no resemblance to the C-97 but, for security reasons, Boeing decided to let the jet project be known as the 367-80.

Work proceeded quickly after the formal start of the project on May 20, 1952. The 367-80 mated a large cabin based on the dimensions of the C-97 with the 35-degree swept-wing design based on the wings of the B-47 and B-52 but considerably stiffer and incorporating a pronounced dihedral. The wings were mounted low on the fuselage and incorporated high-speed and low-speed ailerons as well as a sophisticated flap and spoiler system. Four Pratt & Whitney JT3 turbojet engines, each producing 10,000 pounds of thrust, were mounted on struts beneath the wings.

Upon the Dash 80’s first flight on July 15, 1954, (the 34th anniversary of the founding of the Boeing Company) Boeing clearly had a winner. Flying 100 miles per hour faster than the de Havilland Comet and significantly larger, the new Boeing had a maximum range of more than 3,500 miles. As hoped, the Air Force bought 29 examples of the design as a tanker/transport after they convinced Boeing to widen the design by 12 inches. Satisfied, the Air Force designated it the KC-135A. A total of 732 KC-135s were built.

Quickly Boeing turned its attention to selling the airline industry on this new jet transport. Clearly the industry was impressed with the capabilities of the prototype 707 but never more so than at the Gold Cup hydroplane races held on Lake Washington in Seattle, in August 1955. During the festivities surrounding this event, Boeing had gathered many airline representatives to enjoy the competition and witness a fly past of the new Dash 80. To the audience’s intense delight and Boeing’s profound shock, test pilot Alvin "Tex" Johnston barrel-rolled the Dash 80 over the lake in full view of thousands of astonished spectators. Johnston vividly displayed the superior strength and performance of this new jet, readily convincing the airline industry to buy this new airliner.

In searching for a market, Boeing found a ready customer in Pan American Airway’s president Juan Trippe. Trippe had been spending much of his time searching for a suitable jet airliner to enable his pioneering company to maintain its leadership in international air travel. Working with Boeing, Trippe overcame Boeing’s resistance to widening the Dash-80 design, now known as the 707, to seat six passengers in each seat row rather than five. Trippe did so by placing an order with Boeing for 20 707s but also ordering 25 of Douglas’s competing DC-8, which had yet to fly but could accommodate six-abreast seating. At Pan Am’s insistence, the 707 was made four inches wider than the Dash 80 so that it could carry 160 passengers six-abreast. The wider fuselage developed for the 707 became the standard design for all of Boeing’s subsequent narrow-body airliners.

Although the British de Havilland D.H. 106 Comet and the Soviet Tupolev Tu-104 entered service earlier, the Boeing 707 and Douglas DC-8 were bigger, faster, had greater range, and were more profitable to fly. In October 1958 Pan American ushered the jet age into the United States when it opened international service with the Boeing 707 in October 1958. National Airlines inaugurated domestic jet service two months later using a 707-120 borrowed from Pan Am. American Airlines flew the first domestic 707 jet service with its own aircraft in January 1959. American set a new speed mark when it opened the first regularly-scheduled transcontinental jet service in 1959. Subsequent nonstop flights between New York and San Francisco took only 5 hours – 3 hours less than by the piston-engine DC-7. The one-way fare, including a surcharge for jet service, was 5.50, or 1 round trip. The flight was almost 40 percent faster and almost 25 percent cheaper than flying by piston-engine airliners. The consequent surge of traffic demand was substantial.

The 707 was originally designed for transcontinental or one-stop transatlantic range. But modified with extra fuel tanks and more efficient turbofan engines, the 707-300 Intercontinental series aircraft could fly nonstop across the Atlantic with full payload under any conditions. Boeing built 855 707s, of which 725 were bought by airlines worldwide.

Having launched the Boeing Company into the commercial jet age, the Dash 80 soldiered on as a highly successful experimental aircraft. Until its retirement in 1972, the Dash 80 tested numerous advanced systems, many of which were incorporated into later generations of jet transports. At one point, the Dash 80 carried three different engine types in its four nacelles. Serving as a test bed for the new 727, the Dash 80 was briefly equipped with a fifth engine mounted on the rear fuselage. Engineers also modified the wing in planform and contour to study the effects of different airfoil shapes. Numerous flap configurations were also fitted including a highly sophisticated system of "blown" flaps which redirected engine exhaust over the flaps to increase lift at low speeds. Fin height and horizontal stabilizer width was later increased and at one point, a special multiple wheel low pressure landing gear was fitted to test the feasibility of operating future heavy military transports from unprepared landing fields.

After a long and distinguished career, the Boeing 367-80 was finally retired and donated to the Smithsonian in 1972. At present, the aircraft is installated at the National Air and Space Museum’s new facility at Washington Dulles International Airport.

Gift of the Boeing Company

Boeing Aircraft Co.


Country of Origin:
United States of America

Height 19′ 2": Length 73′ 10": Wing Span 129′ 8": Weight 33,279 lbs.

Physical Description:
Prototype Boeing 707; yellow and brown.

Why Colombia Real Estate Is The Place To Invest
Real Estate Investing
Image by International Real Estate Listings
If you have been in the property development and real estate industry in the past one decade or so, you can agree with me that this is one industry that has seen exponential growth. This basically means that, if you are a home buyer and you would like to buy or rent a home, you will most definitely find the right properties out there. On the other hand, if you are a property developer, the opportunities for property development in the modern day are far more diverse than they were a couple of decades ago.

Read more here……

Leave a Reply

Your email address will not be published. Required fields are marked *